Lecture 14:

Recall: Def: Let 2 be an eigenvalue of a linear operator or matrix with characteristic polynomial f(t). The algebraic multiplicity of 2, denoted $\mu_{T}(\lambda)$ or $\mu_{A}(\lambda)$ is the multiplicity of λ as a Zero of fit), i.e. the largest positive integer k s.t. $(t-\lambda)^k$ fit). $(e.g. f(t) = (t-1)^3 (t-4)^4 (t-5)^7$ Alg. mult. of A=1 is 3 rs4 $\lambda = 4$ λ=5 is7)

Example: 1 is eigenvalue of $I_V : V \to V$ with $M_{I_V}(1) = \dim(V) \beta \rho$ $f(t) = \det \left(\begin{bmatrix} I_{v} \end{bmatrix}_{\beta} - \frac{1}{t} I_{n} \right) = \left(\begin{bmatrix} I - t \\ I - t \end{bmatrix}_{n} - \left(\begin{bmatrix} I - t \\ I - t \end{bmatrix}_{n} \right) = \left(\begin{bmatrix} I - t \\ I - t \end{bmatrix}_{n} - \left(\begin{bmatrix} I - t \\ I - t \end{bmatrix}_{n} \right) = \left(\begin{bmatrix} I - t \\ I - t \end{bmatrix}_{n} \right)$

Prop: Let T be a linear operator on a finite-dim vector
space V and let
$$\lambda$$
 be an eigenvalue of T with algebraic
multiplicity $\mathcal{M}_{T}(\lambda)$. Then:
 $1 \leq \dim(E_{\lambda}) \leq \mathcal{M}_{T}(\lambda)$
We call $\vartheta_{T}(\lambda) \stackrel{\text{def}}{=} \dim(E_{\lambda})$ the geometric multiplicity of λ .
Proof: Choose an ordered basis $\{\overline{v}_{1}, \overline{v}_{2}, ..., \overline{v}_{p}\}$ for E_{λ} and
extend it to an ordered basis $\{\overline{v}_{1}, \overline{v}_{2}, ..., \overline{v}_{p}\}$ for V .
Then: $[T]_{\beta} = \left(\prod_{i=1}^{N_{1}} \sum_{j=1}^{N_{1}} \prod_{i=1}^{N_{1}} \sum_{j=1}^{N_{1}} \sum_{j=$

-

12

Lemma: Let T be a linear operator, and let $\lambda_1, \lambda_2, ..., \lambda_k$ distinct eigenvalues of T. For each i=1,2,..., k, let vie Ezi. If $\overline{v}_i + \overline{v}_2 + \dots + \overline{v}_k = \overline{o}$, then $\overline{v}_i = \overline{o}$ for all i. Proof: Zf not, say v,..., vs =0 Ezz ENI then: りして ひっちひょた。 せい で で v.k · 17/2 It contradicts to our previous proposition that Vi, ..., Vs must be lin. independent.

Our goal is to prove: EAR EZZ Ear 32 (*5* \ Then OB = BIUBZU UBR is linear independent. ② If IB1 + IB2 + ... + (BRI = dim (V), then B is a basis of eigenvectors

Then: Aij = 0 for all i and j (for Si are lin. independent for all i. i. Si u Sz u ... u Sk is linearly independent.

Theorem: Let T be a linear operator on a finite dimensional
vector space V such that the characteristic polynomial splits.
Let λ₁, λ₂,..., λ_k be distinct eigenvalues of T.
Then: (a) T is diagonalizable iff:
$$M_T(\lambda_i) = \delta_T(\lambda_i)$$

for $i=1,2,...,k$
(b) If T is diagonalizable and β_i is an ordered basis
for E_{λ_i} for each i, then = $\beta_i = \beta_i \cup \beta_2 \cup ... \cup \beta_k$ is
an ordered basis for V consisting of eigenvectors.
(so that LTJ_β is a diagonal matrix)
Pf: Next time!!

-