Lecture 14:

Recall : Def: Let λ be an eigenvalue of a linear operator or matr — μ characteristic polynomial f(t). The algebraic multiplicity of λ , denoted $\mu_{\tau}(\lambda)$ or $\mu_A(\lambda)$ is the multiplicity of λ as a enoted $\mu_{\tau}(\lambda)$ or μ_{A} . The largest positive integer k s.t. $(t-\lambda)^{k}|S(t)|$. $(e.g. f(t) = (t-1)^3 (t-4)^4 (t-5)^7$ Alg. mult. of $\lambda = 1$ is s $\lambda = 4$ is 4 λ =5 is 7

Example: 1 is eigenvalue of $I_v: V \rightarrow V$
with $M_{I_v}(1) = dim(V)$ β ρ $f(t)=det\left(\begin{array}{cc} L_{11}J_{12} & -L_{11} \\ I_{11} & I_{12} \end{array}\right)=\left(\begin{array}{cc} I-t & & \\ & -I_{11} \\ & & -I_{12} \end{array}\right)=\left(I-t\right)^{n}$

Prop:	Let T be a linear operator on a finite-dim vector
space V and let λ be an eigenvalue of T with algebraic	
multipitivity $M_T(\lambda)$. Then:	
$1 \leq \dim(E_{\lambda}) \leq M_T(\lambda)$	
We call $\gamma_T(\lambda) = \dim(E_{\lambda})$ the geometric multiplicity of λ .	
Proof:	Choose an ordered basis $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_p\}$ for E_{λ} and
extend if the an ordered basis $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_p\}$ for V .	
Then: $LT_{\beta} = \begin{pmatrix} \frac{2\sqrt{3}}{3} & \frac{1}{2} & \frac{1}{2} \\ \frac{2\sqrt{3}}{3} & \frac$	

$$
\Rightarrow f_{\tau}(t) = det \left(\frac{(\lambda - t)I_{\rho}}{\sigma} \right) \frac{1}{C - t I_{n-\rho}} \right)
$$

= det ((1-t)I_{\rho}) det (C - t I_{n-\rho})
= (1-t)^{\rho} det (C - t I_{n-\rho})

:. (1-t)^{\rho} | f_{\tau}(t)

:. $\mu_{\tau}(\lambda) \ge \rho = \gamma_{\tau}(\lambda)$

 \overline{u}

 \sim cm

Lemma: Let T be a linear operator, and let $\lambda_1, \lambda_2, ..., \lambda_k$ distinct eigenvalues of T. For each i=1,2,.., k, let vi e Exi. If $\vec{v}_1 + \vec{v}_2 + ... + \vec{v}_k = \vec{0}$, then $\vec{v}_i = \vec{0}$ for all i. $Proof: If not, say$ $v_{1}, \frac{1}{v_{s}}$ $\neq 0$ $E_{\lambda z}$ then: $\vec{v}_1 + \vec{v}_2 + \dots + \vec{v}_5 = 0$ $\begin{pmatrix} 1 \\ -1 \\ 0 \\ -1 \end{pmatrix}$ $\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}$ It contradicts to our previous proposition that \vec{v}_1 , \vec{v}_s must be [In. independent.

Our goal is to prove: $E\lambda R$ E 12 E_{λ} β 2 |51 Then $\bigoplus \beta = \beta_1 \cup \beta_2 \cup ... \cup \beta_k$ is linear independent. 3 If $|\beta_1| + |\beta_2| + ... + |\beta_k| = \dim(V)$ then β is a basis of

Proposition:	Let T be a Linear operator, and let $\lambda_1, \lambda_2, ..., \lambda_k$
be distinct eigenvalues of T. For each $i = 1, 2, ..., k$, let $S_i \subset E_{\lambda_i}$ be a finite, linearly independent subset. Then:	
$S = S_1 \cup S_2 \cup ... \cup S_k$ is a linearly independent subset of V.	
Put:	$\forall i$ to $S_i = \{\overrightarrow{v}_{i1}, \overrightarrow{v}_{i2}, ..., \overrightarrow{v}_{i n_i}\}$ for $i = 1, 2, ..., k$.
Suppose $\exists \lambda_{i,j} \in F$ for $1 \leq j \leq n_i$ and $1 \leq i \leq k$ such that $\sum_{i=1}^{k} \sum_{j=1}^{n_i} \lambda_{i,j} \overrightarrow{v}_{i,j} = \overrightarrow{O}$	
From: $\overrightarrow{w_1} + \overrightarrow{w_2} + ... + \overrightarrow{w_{i k}} = \overrightarrow{O} \Rightarrow \overrightarrow{W_i} = \overrightarrow{O} \Rightarrow \overrightarrow{S} = 1$	

르

Then: $a_{ij} = 0$ for all i and j (for Si are lin. independent for all i. in S, U Sz U ... U Sk is linearly independent.

Theorem:	Let T be a linear operator on a finite dimensional vector space V such that the characteristic polynomial splits.
Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct eigenvalues of T.	
Then:	(a) T is diagonalizable iff: $M_T(\lambda_i) = \lambda_T(\lambda_i)$
(b) If T is diagonalizable and β_i is an ordered basis.	
for E_{λ_i} for each i, then = $\beta_i = \beta_i \cup \beta_2 \cup ... \cup \beta_k$ is an ordered basis for V consisting of eigenvectors.	
(s) that LTJ _{\beta} is a diagonal matrix)	
If: Next, time!!	

 \sim cm